acid in benzene with azeotropic removal of water (recirculating Dean-Stark trap filled with Linde 4A molecular sieves). Chromatography of the reaction mixture on silica gel provided (hexane elution) a mixture of m-terphenyl (24%), ${ }^{15} o$-terphenyl ($c a .3 \%$), and 1,1-dimethyl-2,7-diphenyl-1-silacyclohepta-2,4,6-triene (6) (ca. 11%). Further elution with $1: 1$ hexane-ether removed 1,1-dimethyl-cis-2,5-diphenyl-1-silacyclopent-3-ene-2-ethanal (7) (colorless oil; $12.2 \% ; \mathrm{nmr}^{15}\left(\mathrm{CCl}_{4}\right) \delta$ $9.44(\mathrm{~m}, 1 \mathrm{H}), 6.80-7.40(\mathrm{~m}, 10 \mathrm{H}), 6.21(\mathrm{~d}$ of $\mathrm{d}, 1 \mathrm{H}$, $J=7$ and 3 Hz), $6.00(\mathrm{~d}$ of $\mathrm{d}, 1 \mathrm{H}, J=7$ and 2 Hz), 3.24 (br s, 1 H), 3.04 (d of d, $1 \mathrm{H}, J=18$ and 2 Hz), 2.51 (d of d, $1 \mathrm{H}, J=18$ and 3 Hz), $0.26 \mathrm{Os}, 3 \mathrm{H}$), -0.78 (s, 3 H); ir $\nu_{\mathrm{C}=0}$ (neat) $1727 \mathrm{~cm}^{-1}$; mass spectrum (70 eV) $m / e 304\left(\mathrm{M}^{+}\right)$). ${ }^{16}$ Aldehyde 7 was found to be quantitatively formed from 5 a in a 300° flow pyrolysis.

In our hands the silepin (6) could not be completely purified from the terphenyls with gc, tlc, or fractional crystallization. However liquid chromatography (4 $\mathrm{ft} \times 3 / 8$ in. Bondapak $\mathrm{C}_{18} /$ Porasil B column with MeCN $\mathrm{H}_{2} \mathrm{O}$ as carrier solvent) allowed clean separation of 6 (mp 60-61 ${ }^{\circ}$).

The question of the geometry of 6 is a crucial one as ring planarity would imply significant cyclic ($p-d-p$) π delocalization ${ }^{12}$ providing a neutral analog of the tropylium cation. The methyl protons of 6 appear as one singlet $(\delta 0.10)^{17}$ in the nmr spectrum which can be accounted for by a rapidly inverting boat geometry, a planar geometry, or a noninverting boat with fortuitous nmr equivalence. ${ }^{10}$ The latter possibility may be discounted as even with no cyclic delocalization a very low barrier for inversion of boat forms would be predicted from the calculations of Allinger ${ }^{18}$ for benzoand dibenzosilepins. To distinguish between inverting boat and planar geometry, spectral comparison of 6 and a model compound of reasonably certain geometry was employed. An excellent model compound for 6 is 1,6,7-triphenyltropilidene (8) which was prepared from Diels-Alder addition of α-pyrone to 1,2,3-triphenylcyclopropene followed by thermal extrusion of CO_{2}. The vinyl protons of 8 appear as an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ eight-line spectrum (lower field protons exhibit slight allylic coupling) with centers at $\delta 6.40$ and $6.71, J$ apparent $=$ $3.0,4.5 \mathrm{~Hz}$. This is remarkably similar to the olefinic spectrum of 6 which is also an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ eight-line pattern with centers at $\delta 6.51$ and $6.80, J$ apparent $=3.0,4.5$ Hz . This would imply that 6 possesses the same geometry as 8 which can be assumed to be inverting boat. The uv spectrum of $6\left(\lambda_{\max }^{\mathrm{MeCl}_{2}}(\log \epsilon) 234\right.$ (4.29), 320 (4.04)) is rather similar to that of $8\left(\lambda_{\max }^{\mathrm{MecN}}\right.$ ($\log \epsilon$) 259 (4.38), 330 (3.99)). Thus it would appear that cyclic conjugation through silicon does not control the geometry of 6 . If indeed such bonding is present, the only effect may be a possible lowering of the inversion barrier through stabilization of the planar form.

Pyrolysis of 6 (sealed tube, $250^{\circ}, 15 \mathrm{~min}$) cleanly afforded o-terphenyl. This was expected from the reported thermal conversion of benzo[d]silepins to naphthalene. ${ }^{4.5}$ This is of considerable interest as the elimination presumably takes place through the inter-

[^0]
mediacy of the silanorcardiene (9) ${ }^{19}$ and thus would involve the until recently unknown ${ }^{20}$ silacyclopropane.

Acknowledgment. This research was supported by Grant No. GM 16689 from the National Institutes of Health, Public Health Service. The technical assistance of Mr. Louis E. Sartori of Waters Associates, Inc. in the separation of 6 by liquid chromatography is gratefully acknowledged.
(19) Such a mechanism is most commonly used to explain conversion of thiepins to benzenes through sulfur extrusion: B. P. Stark and A. J. Duke, "Extrusion Reactions," Permagon Press, Oxford, 1967.
(20) R. L. Lambert, Jr., and D. Seyferth, J. Amer. Chem. Soc., 94, 9246 (1972).
(21) Gulf Oil Predoctoral Fellow, 1971-1972.
(22) NASA Predoctoral Fellow, 1969-1972.

Thomas J. Barton,* Roland C. Kippenhan, Jr., ${ }^{21}$ A. James Nelson ${ }^{22}$
Department of Chemistry, Iowa State University
Ames, Iowa 50010
Received August 29, 1973

A Laboratory Model for the Biogenesis of the "Antipodal" Strychnos Alkaloids

Sir:
The discovery of enantiomeric forms ${ }^{1}$ of the Strychnos alkaloid akuammicine (1) and the diastereoisomers (-)lochneridine (2) and (+)-20-epilochneridine ${ }^{2}$ (3) has

(-)-1

2

3
presented a long standing problem ${ }^{3}$ in terms of the absolute stereochemistry of the biogenetic pathway to $(+)-1$ and 3. Thus a nonstereospecific step involving C_{15} has been invoked ${ }^{1}$ to account for the difficulty in arriving at a plausible mechanism for the inversion of stereochemistry at C_{3}, C_{7}, and C_{15} in 1 and 2 which would surely involve rupture of the $\mathrm{C}_{3}-\mathrm{C}_{7}$ and $\mathrm{C}_{15}-\mathrm{C}_{16}$ bonds. Biosynthetic experiments ${ }^{4}$ have revealed that

[^1]the Corynanthé alkaloid geissoschizine is a good precursor of both (-)-akuammicine (1) and strychnine, ${ }^{5}$ the absolute stereochemistry at C_{15} being preserved in this process. ${ }^{6}$ In the absence of a racemization mechanism for (1) the logical conclusion is that the biosynthesis of $(+)-(\mathbf{1})$ and (3) involves a set of Corynanthé alkaloids bearing antipodal C_{15} stereochemistry. Inspection of the stereochemistry of (3) suggests a possible

Scheme I

solution to this enigma in that the absolute stereochemistry at C_{20} in 3 coincides with that of its diastereoisomer 2. We suggest that the Strychnos alkaloids can suffer inversion at $\mathrm{C}_{3}, \mathrm{C}_{7}$, and C_{15} at the dihydropyridine level as indicated in Scheme I by a mechanism which is reminiscent of the theory developed for the biogenesis of antipodal versions of the pentacyclic Aspidosperma alkaloids. ${ }^{7}$ The formation of $\mathbf{3}$ from 2 is thus rationalized while dehydration of 3 leads to $(+)-1$. A simple model to illustrate this hypothesis has been provided by the following experiment. ${ }^{8}$ (-)-19,20-Dihydroakuammicine (4) was heated in degassed absolute methanol solution at 95° for 50 hr in a sealed tube. A steady decrease of the optical rotation of the solution was noted by ORD spectrum during this period and analysis of the products was achieved on EM silica gel F-254

[^2]analytical plate with $10 \% \mathrm{MeOH}$ in CHCl_{3} as developer. The diastereoisomer 5 was observed on the

plate with $R_{f}=0.16$ which was very close to the starting material ($R_{t}=0.19$). Preparative tlc with subsequent rechromatography afforded good separation of optically pure starting material (65%) ($\mathrm{ORD}^{9}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $[\Phi](\mathrm{nm})-42,000(340),+89,000(295),+82,000(245) ;$
 (15%) ($\mathrm{ORD}^{9}\left(\mathrm{CH}_{3} \mathrm{OH}\right)[\Phi](\mathrm{nm})+24,000$ (340), $-81,000(295),-78,000(245) ; \lambda_{\max }^{\text {IIORB }} 325,294,233 \mathrm{~nm}$; m/e 324 ($\mathrm{M}^{+} ; 65 \%$), 293, 265 (10%), 225 (100%), 208 (18%), $194(25 \%), 180(30 \%), 167(35 \%), 125(55 \%)$, $94(25 \%) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right), \delta 8.70(\mathrm{NH}), 7.0(\mathrm{ArH}), 4.15$ $\left(\mathrm{C}_{3} \mathrm{H}\right), 3.78\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Diastereoisomer (5) was further characterized by its nonidentity with 19,20-dihydrocondylocarpine ${ }^{10.11}$ (6), and by reduction $\left(\mathrm{Zn}-\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to (+)-20-epi-2,16,19,20-tetrahydroakuammicine (7) whose characteristic mass spectrum ${ }^{10}$ was virtually identical with that of its diastereoisomer (8). The equilibration was also conducted in the reverse direction to give the same mixture ($\mathbf{4 : 5 ; 4 : 1 \text {) starting }}$ with (5) in high yield (90%). The facility of this intriguing "racemase" model suggests that pseudoakuammicine $[(\pm)-1]$ could be formed in Picralima species by the inversion mechanism operating either on the 20 -hydroxy series (as 2) or at the 19,20 -dihydro level (as in $5 \rightleftarrows 4$) followed by dehydration or oxidation, respectively, the former step having been demonstrated in vitro. ${ }^{12}$
These experiments are also suggestive for the design of a short stereospecific synthesis of the Strychnos alkaloids via the seco system (9).
Acknowledgments. We thank the National Institutes of Health (Grant CA-11095) for financial support, Professor J. LeMen for a gift of akuammicine, and Dr. C. C. Wei for preliminary experiments.
(10) H. Budzikiewicz, J. M. Wilson, C. Djerassi, J. Lévy, J. LeMen, and M.-M. Janot, Tetrahedron, 19, 1265 (1963); H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Structural Elucidation of Natural Products by Mass Spectrometry," Vol. I, Holden-Day, San Francisco, Calif., 1964, p 133.
(11) D. Schumann and H. Schmid, Helv. Chim. Acta, 46, 1996 (1963). (12) (a) C. Djerassi, Y. Nakagawa, J. M. Wilson, H. Budzikiewicz, B. Gilbert, and L. D. Antonaccio, Experientia, 19, 467 (1963); (b) Y. Nakagawa, J. M. Wilson, H. Budzikiewicz, and C. Djerassi, Chem. Ind. (London), 1986 (1962).
A. Ian Scott,* C. L. Yeh

Sterling Chemistry Laboratory, Yale University New Haven, Connecticut 06520

Received December 19, 1973

[^0]: (17) No splitting of this peak is observed with lower temperatures although broadening is seen at -95° in CS_{2}.
 (18) N. L. Allinger, R. A. Greengard, and C. J. Finder, Tetrahedron Lett., 3095 (1973).

[^1]: (1) P. N. Edwards and G. F. Smith, Proc. Chem. Soc., London, 215 (1960).
 (2) P. Lathulliere, L. Olivier, J. Lévy and J. Le Men, Ann. Pharm. Fr., 24, 547 (1966).
 (3) J. E. Saxton in "The Alkaloids," Vol. VIII, R. H. F. Manske, Ed., Academic Press, New York, N. Y., 1965, Chapter 7; Vol. X, 1968, Chapter 11.
 (4) A. I. Scott, P. C. Cherry, and A. A. Qureshi, J. Amer. Chem. Soc., 91, 4932 (1969); A. R. Battersby and E. S. Hall, Chem. Commun., 793 (1969).

[^2]: (5) A. I. Scott and S. I. Heimberger, J. Chem. Soc., Chem. Commun., 217 (1973).
 (6) $C f$. the results of feeding 4 R and $4 \mathrm{~S} 4^{3} \mathrm{H}$, labeled mevalonates to the main classes of alkaloid where the $4 \mathrm{R}^{3} \mathrm{H}$ label is retained at C_{15} in every case; A. R. Battersby, Chem. Soc., Spec. Period. Rep., 1, 3 I (1971), and references cited therein.
 (7) Reviewed by A. I. Scott, Accounts Chem. Res., 3, 151 (1970).
 (8) Cf. P. N. Edwards and G. F. Smith, J. Chem. Soc., 1458 (1961).
 (9) W. Klyne, R. J. Swan, B. W. Bycroft, D. Schuman, and H. Schmid, Helv. Chim. Acta, 48, 443 (1965); W. Klyne, R. J. Swan, B. W. Bycroft, and H. Schmid, ibid., 49, 832 (1966), and references cited by A. A. Gorman, M. Hesse, and H. Schmid, Chem. Soc., Spec. Period. Rep., 1, 325, (1971).

